
BERRY-ESSEEN BOUNDS

IN THE LOCAL LIMIT THEOREMS

S. G. BOBKOV1,4 AND F. GÖTZE2,4

Abstract. Berry-Esseen-type bounds are developed in the multidimensional local limit
theorem in terms of the Lyapunov coefficients and maxima of involved densities.

1. Introduction

Consider the normalized sum

Zn =
X1 + · · ·+Xn√

n

of n independent random vectors Xk in Rd with mean zero and covariance matrices σ2kId
(σk > 0) such that σ21 + · · · + σ2n = n. The latter ensures that Zn has mean zero and unit
covariance matrix Id.

Introduce the Lyapunov ratios of the third and fourth orders

β3 = sup
|θ|=1

[
1

n

n∑
k=1

E | 〈θ,Xk〉 |3
]
, β4 = sup

|θ|=1

[
1

n

n∑
k=1

E 〈θ,Xk〉4
]
,

assuming respectively that E |Xk|3 < ∞ and E |Xk|4 < ∞ for all k ≤ n. In dimension one,
the quantity β3 is commonly used to quantify the normal approximation for the distribution
of Zn in a weak sense via the Berry-Esseen bound

sup
x∈R

∣∣P{Zn ≤ x} − P{Z ≤ x}
∣∣ ≤ C√

n
β3,

where Z is a standard normal random variable and C is an absolute constant (cf. e.g. [19]).
The Lyapunov ratio β4 also appears in a natural way, for example, for the approximation
of the characteristic function of Zn by a corrected normal characteristic function. Both
quantities may also be used to control the distance between the distribution of Zn and Z on
the real line in total variation and in relative entropy, cf. [9].

The aim of this note is to quantify the normal approximation in a stronger sense towards
a uniform convergence of densities pn of Zn to the standard normal density

ϕ(x) =
1

(2π)d/2
e−|x|

2/2, x ∈ Rd.
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In the i.i.d. situation (when all Xk are identically distributed with σk = 1), the necessary
and sufficient condition for the convergence of the uniform distance

∆n = sup
x
|pn(x)− ϕ(x)|

to zero as n→∞ is that pn is bounded for some n = n0 (cf. [19, 5]). As typically n0 = 1 in
applications, it is natural to consider the case where all Xk have bounded densities.

So, introduce the maximum-of-density functional M(X) = ess supx p(x), where p denotes
a density of a random vector X, and define

M = max
k

M(Xk), σ2 = max
k

σ2k (σ > 0).

The functionals β3, β4, σ and M can be used to derive the following upper bounds (which
seem to be new already in the one dimensional situation).

Theorem 1.1. With some positive absolute constant C, the density pn of Zn satisfies

∆n ≤
(Cσ)dM2

√
n

β3. (1.1)

Moreover, if E 〈θ,Xk〉3 = 0 for all θ ∈ Rd and k ≤ n (in particular, if the distributions of Xk

are symmetric), then

∆n ≤
(Cσ)2dM3

n
β4. (1.2)

Hence, when M and σ are bounded, it is possible to strengthen the Berry-Esseen theorem
with an extension to higher dimensions.

In order to reflect the influence of M(Xk) on average (similarly to β3), rather than via
the maximal value M , some refinements of the bounds (1.1)-(1.2) are given in Section 6.

For several classes of probability distributions, the functional M(X) is of the order σ−d

when a random vector X has a covariance matrix σdId (modulo d-dependent constants). Here
is an example involving convexity properties of distributions.

Corollary 1.2. Suppose that the random vectors Xk have log-concave densities, with
mean zero and unit covariance matrix. Then

∆n ≤
Cd√
n

(1.3)

with some constant Cd depending on d only. If additionally the distributions of Xk’s are
symmetric, then

∆n ≤
Cd
n
. (1.4)

Based on the application of the Fourier transform (which is typical in the study of various
variants of the central limit theorems), the main arguments used in the proof of Theorem 1.1
employ the subbaditivity property of the maximum-of-density functional M(X) with respect
to convolutions. This tool has been introduced in the field of limit theorems only recently and
is used in [10], [11]. Another ingredient in the proof involves the extension of the Statuljavičus
separation theorem for characteristic functions to higher dimensions.
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The paper is organized as follows. We start with remarks on isotropic constants and gen-
eral bounds for M(X) in terms of the covariance matrix of a random vector X (Section 2) and
then discuss the question of how one can separate the absolute value of a given characteristic
function f(t) from 1 in terms of M(X) outside a neighborhood of the origin (Sections 3-4).
In Sections 5 we recall the subadditivity property of M(X) and develop its applications to
the integrability properties of powers of characteristic functions. Basic results on the normal
approximation of products of characteristic functions are recalled in Section 6. In Section 7,
we derive refined bounds on ∆n, which are used in Section 8 to finish the proof of Theorem 1.1
and Corollary 1.2.

2. Lower Bounds on Maximum of Density via Covariance Matrix

To start with, first let us recall the general relation

M2σ2 ≥ 1

12
, (2.1)

which holds for any random variable X with standard deviation σ and maximum of density
M = M(X). As an early reference one can mention the paper by Statuljavičus [21], p. 651,
where (2.1) is stated without derivation as an obvious fact. In the muldimensional situation,
(2.1) is extended in the form

M2/dσ2 ≥ 1

d+ 2
ω
−2/d
d , (2.2)

assuming that the random vectorX has a covariance matrix σ2Id (such distributions are called
isotropic). Here an equality is attained for the uniform distribution on every Euclidean ball
in Rd and, in particular, for the unit ball B2 = {x ∈ Rd : |x| ≤ 1} with volume

ωd = vold(B2) =
πd/2

Γ(d2 + 1)
. (2.3)

This extremal property of balls has been investigated in Convex Geometry in the context
of bounding volume of slices of convex bodies, see Hensley [17] and Ball [3]. More precisely,
it was shown in [3], Lemma 6, that, if the density of X satisfies p(x) ≤ p(0) for all x ∈ Rd,
then

p(0)2/d
∫
Rd

|x|2 dx ≥ d

d+ 2
ω
−2/d
d .

This amounts to (2.2) in the case where X has mean zero, covariance matrix σ2Id, and
assuming that p(x) is maximized at the origin. In [12], Proposition III.1, this inequality was
generalized and strengthened as the property that, for any non-decreasing function H = H(t)
in t ≥ 0, the moment-type functional∫

Rd

H(M1/d |x|) p(x) dx

is minimized for the uniform distribution on every Euclidean ball with center at the origin.
For H(t) = t2, this property implies (2.2), assuming that X has mean zero and covariance
matrix σ2Id. But the inequality (2.2) is translation invariant, so it continues to hold without
the mean zero assumption.
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The quantity M1/dσ is often called an isotropic constant of the distribution of X. It is
also well-known that the relation (2.2) is in essense dimension-free, since it implies

M2/dσ2 ≥ 1

2πe
(2.4)

with an optimal constant on the right-hand side (attainable asymptotically for growing di-
mension d). More generally, if a random vector X has covariance matrix R, then(

M2 det(R)
)1/d ≥ 1

2πe
.

This follows from the previous lower bound (2.4) by applying it to the random vector Y =

R−1/2X. It is isotropic with σ(Y ) = 1 and M(Y ) =
√

det(R)M(X).

In this connection, let us mention that in the class of isotropic distributions on Rd having
log-concave densities, all these lower bounds can be reversed as

M2/dσ2 ≤ K2
d (2.5)

in terms of the maximal isotropic constant over this class for a fixed dimension d. In the
equivalent form, the hyperplane conjecture raised in 1980’s by Bourgain, which is still open,
asserts that Kd is bounded by an absolute constant. This is true, for example, when addition-
ally the density of X is symmetric about all coordinate axes (cf. e.g. [13]). As for the general
log-concave case, at this moment the best result in this direction belongs to Klartag [18] with
his bound K2

d ≤ C log(d+ 1) for some absolute constant C. Let us refer an interested reader
to [15] and [1] for the history of the problem and related results.

3. Separation of Characteristic Functions (Statuljavičus Theorem)

In order to apply the Fourier methods for the derivation of density bounds in a quantitative
way, one has to realize how to separate the characteristic function

f(t) = E eitX , t ∈ R,

of a random variable X from 1 outside a neighborhood of the origin (which is potentially
possible due to the Riemeann-Lebesgue lemma). That is, the task is to derive estimates like
sup|t|≥t0 |f(t)| < 1 − δ with an arbitrary t0 > 0 and some positive δ = δ(t0). An important

step in this direction was made by Statuljavičus [21] who derived an upper bound which we
prefer to state in an equivalent form.

Proposition 3.1. Given a random variable X with standard deviation σ and finite
maximum of density M = M(X), its characteristic function satisfies

|f(t)| ≤ 1− c

M2σ2
min{σ2|t|2, 1}, t ∈ R, (3.1)

with some absolute constant c > 0.

Some generalizations of this result to the general case of unbounded densities and without
moment assumptions are discussed in [8]. In fact, Statulevičius considered more complicated
quantities for upper bounds reflecting the behavior of the density p of X on non-overlapping
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intervals of the real line and obtained the bound

|f(t)| ≤ exp
{
− t2

96M2 (2σ|t|+ π)2

}
as a partial case of a more general relation. Therefore, let us include a shorter simplified
argument aimed at the bound (3.1) only (without polishing the constant c).

Proof. In a more flexible form, the inequality (2.1) can be equivalently written as(
ess supx q(x)

)2 ∫ ∞
−∞

x2q(x) dx ≥ 1

12

(∫ ∞
−∞

q(x) dx
)3
, (3.2)

holding true for any non-negative Borel measurable function q(x) on the real line.

Consider the symmetrized random variable X̃ = X−X ′, where X ′ is an independent copy
of X. It has a positive characteristic function |f(t)|2 and density

w(x) =

∫ ∞
−∞

p(x+ y)p(y) dy ≤M.

Write

1− |f(2πt)|2 =

∫ ∞
−∞

(1− cos(2πtx)w(x) dx = 2

∫ ∞
−∞

sin2(πtx)w(x) dx.

In order to bound the last integral from below, one may use the elementary inequality

| sin(πx)| ≥ ‖x‖ = min{|x− k| : k ∈ Z},

where both sides represent 1-periodic functions. Assuming without loss of generality that
t > 0 and using 1− |f(s)|2 ≤ 2 (1− |f(s)), this gives

1− |f(2πt)| ≥ 4

∫
W
‖tx‖2w(x) dx, (3.3)

where we restrict the integration to the set W = {x ∈ R : t|x| < N + 1
2} for a suitable integer

N ≥ 0. Let us split the integral in (3.3) into the sets

Wk =
{
x ∈ R : k − 1

2
< t|x| < k +

1

2

}
and rewrite (3.3) as

1− |f(2πt)| ≥ 4
N∑

k=−N

∫
Wk

|tx− k|2w(x) dx

= 4t2
N∑

k=−N

∫ 1
2t

− 1
2t

y2w
(
y +

k

t

)
dy.

Applying (3.2) to the functions qk(y) = w(y + k
t ) 1[− 1

2t
, 1
2t
](y) and using w ≤M , we have∫ 1

2t

− 1
2t

y2w
(
y +

k

t

)
dy ≥ 1

12M2

[ ∫ 1
2t

− 1
2t

w
(
y +

k

t

)
dy

]3
=

1

12M2

(∫
Wk

w(x) dx

)3

.



6 S. G. Bobkov and F. Götze

Hence

1− |f(2πt)| ≥ t2

3M2

N∑
k=−N

Q3
k, where Qk =

∫
Wk

w(x) dx.

Subject to
∑N

k=−N Qk = Q, the sum
∑N

k=−N Q
3
k is minimized when Qk = Q/(2N + 1). This

leads to

1− |f(2πt)| ≥ 1

3M2

t2

(2N + 1)2
Q3. (3.4)

One should now maximize the right-hand side or choose a suitable N . Since EX̃ = 0,

EX̃2 = 2σ2, we get, by Chebyshev’s inequality,

1−Q = P
{
|X̃| ≥

N + 1
2

t

}
≤ 2

(
σt

N + 1
2

)2

. (3.5)

If σt > 1
4 , we choose N = [2σt+ 1

2 ], in which case Q ≥ 1
2 and 2N + 1 ≤ 12σt. Hence

t2

(2N + 1)2
Q3 ≥ t2

(12σt)2 · 8
=

1

1152σ2

and thus

1− |f(2πt)| ≥ 1

3456M2σ2
, σt ≥ 1/4.

If σt ≤ 1
4 , the choice N = 0 in (3.5) yields Q ≥ 1

2 . By (3.4),

1− |f(2πt)| ≥ t2

24M2
, σt ≤ 1

4
.

�

4. Separation of Characteristic Functions (Reduction to Dimension One)

In the multidimensional case, the characteristic function

f(t) = E ei〈t,X〉, t ∈ Rd,

admits a similar bound. The next statement is a preliminary step in the proof of Theorem 1.1.

Proposition 4.1. Given a random vector X in Rd with covariance matrix σ2Id, σ > 0,
and a finite maximum of density M = M(X), its characteristic function satisfies

|f(t)| ≤ 1− cd

M2σ2d
min{σ2|t|2, 1}, t ∈ Rd, (4.1)

with some absolute constant c > 0.

Note that the isotropic constant M1/dσ is present on the right-hand side, which is bounded
away from zero according to (2.4). For isotropic log-concave distributions, it is also bounded
from above by a d-dependent constant according to (2.5). But in this case one can certainly
obtain better bounds with decay of f(t) at infinity.
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For the proof, it looks natural to apply the one dimensional result to random variables
Xθ = 〈θ,X〉 with unit vectors θ. However, it may happen that Xθ will have an unbounded
density, which means that Proposition 3.1 is not applicable.

For example, in dimension d = 2, suppose that X = (X1, X2) has a uniform distribution
on the unbounded region R = {(x1, x2) : |x1| ≤ exp(−c|x2|)}, c > 0, that is, with density

p(x1, x2) =
c

4
1R(x1, x2), x1, x2 ∈ R.

Then X1 takes values in (−1, 1) and has density

p1(x1) =

∫ ∞
−∞

p(x1, x2) dx2 =
1

2
log

1

|x1|
, −1 < x1 < 1,

which is unbounded near zero. It is easy to check that the random vector X is isotropic, that
is, EX1X2 = 0 and EX2

1 = EX2
2 for a suitable constant c.

Proof of Proposition 4.1. The above example shows that a preliminary density trun-
cation is desirable. Introduce a random vector Xr in Rd with parameter r > 0 with density

pr(x) =
1

br
pr(x) 1{|x|<r}, x ∈ Rd,

where br = P{|X| < r} is a normalizing constant. Assuming that d ≥ 2, we choose r = σ
√

2d,
which guarantees, by Markov’s inequality, that

br = 1− P{|X| ≥ r} ≥ 1− E |X|2

r2
= 1− dσ2

r2
=

1

2
.

Put t = sθ, s ∈ R, |θ| = 1, and consider the characteristic functions

gr(s) = E ei〈t,Xr〉 = E eis〈θ,Xr〉, g(s) = E ei〈t,X〉 = E eis〈θ,X〉.

By construction,

1− |g(s)|2 = 2

∫
Rd

sin2
(〈t, x〉

2

)
p(x) dx

≥ 2

∫
|x|<r

sin2
(〈t, x〉

2

)
p(x) dx

= 2br

∫
Rd

sin2
(〈t, x〉

2

)
pr(x) dx

≥
∫
Rd

sin2
(〈t, x〉

2

)
pr(x) dx =

1

2
(1− |gr(s)|2).

Thus,

1− |g(s)|2 ≥ 1

2
(1− |gr(s)|2). (4.2)

In order to bound from below the right-hand side, first note that

Var(〈θ,Xr〉) =
1

2b2r

∫
|x|<r

∫
|y|<r

〈θ, x− y〉2 p(x)p(y) dxdy

≤ 1

2b2r

∫
Rd

∫
Rd

〈θ, x− y〉2 p(x)p(y) dxdy =
σ2

b2r
≤ 4σ2.
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Thus,

Var(〈θ,Xr〉) ≤ 4σ2. (4.3)

The maximum of density of the random variable 〈θ,Xr〉 can also be related to M = M(X).
For simplicity, let θ = e1 = (1, 0, . . . , 0), so that 〈θ,Xr〉 has the one dimensional density∫

Rd−1

pr(x, y) dy ≤ 1

br

∫
|y|<r

p(x, y) dy ≤ 2ωd−1r
d−1M, x ∈ R.

Thus, for any unit vector θ in Rd,

M(〈θ,Xr〉) ≤ 2ωd−1r
d−1M. (4.4)

Therefore, by Proposition 3.1 applied to the characteristic function gr(s) with its proper-
ties (4.3)-(4.4), it follows that

1− |gr(s)|2 ≥
c

ω2
d−1r

2(d−1)M2σ2
min{σ2s2, 1}

up to some absolute constant c > 0. Using this in (4.2), we arrive at the similar relation

1− |g(s)|2 ≥ c

ω2
d−1r

2(d−1)M2σ2
min{σ2s2, 1},

that is,

1− |g(s)|2 ≥ c

ω2
d−1(2d)d−1M2σ2d

min{σ2s2, 1}.

To simplify the constants, recall the formula (2.3) and Batir’s bounds for the Gamma
function ([4])

√
2e
(x
e

)x
≤ Γ

(
x+

1

2

)
≤
√

2π
(x
e

)x
, x ≥ 1

2
.

The lower bound gives

ωd−1(2d)
d−1
2 =

π
d−1
2

Γ(d+1
2 )

(2d)
d−1
2 ≤ 1

2
√
πed

(4πe)d/2.

It remains to note that 1− |g(s)|2 ≤ 2 (1− |g(s)|), and (4.1) follows. �

5. Maximum of Convolved Densities

Convolved densities are known to have improved smoothing properties. First, let us emphasize
the following general fact.

Proposition 5.1. If independent random vectors X1, . . . , Xm (m ≥ 2) with values in
Rd have bounded densities, then the sum Sm = X1 + · · · + Xm has a bounded uniformly
continuous density vanishing at infinity.

Proof. Denote by qk the densities of Xk and assume that qk(x) ≤Mk for all x ∈ Rd with
some constants Mk (k ≤ m). By the Plancherel theorem, for the characteristic functions
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vk(t) = E ei〈t,Xk〉, we have∫
Rd

|vk(t)|m dt ≤
∫
Rd

|vk(t)|2 dt = (2π)d
∫
Rd

qk(x)2 dx

≤ (2π)d
∫
Rd

Mkqk(x) dx = (2π)dMk,

where we used the property |vk(t)| ≤ 1, t ∈ Rd. Hence, by Hölder’s inequality, the character-
istic function f(t) = v1(t) . . . vm(t) of Sm is integrable and has L1-norm∫

Rd

|f(t)| dt ≤
(∫

Rd

|v1(t)|m dt
)1/m

. . .
(∫

Rd

|vm(t)|m dt
)1/m

≤ (2π)d (M1 . . .Mm)1/m < ∞. (5.1)

One may conclude that the random variable Sm has a bounded, uniformly continuous density
expressed by the inversion Fourier formula

q(x) =
1

(2π)d

∫
Rd

e−i〈t,x〉f(t) dt, x ∈ R. (5.2)

Since f is integrable, it also follows that q(x) → 0 as |x| → ∞, by the Riemann-Lebesgue
lemma. �

Since, by (5.2),

q(x) ≤ 1

(2π)d

∫
Rd

|f(t)| dt

for all x ∈ R, the inequality (5.1) also implies that

M(Sm) ≤ (M(X1) . . .M(Xm))1/m. (5.3)

However, the relation (5.3) does not correctly reflect the behavior of M(Sm) with respect to
the growing parameter m, especially in the i.i.d. situation. A more precise statement from
[7] is described in the following relation, where the geometric mean of maxima is replaced
with the harmonic mean.

Proposition 5.2. Given independent random vectors Xk, 1 ≤ k ≤ m, with values in Rd,
one has

1

M(Sm)2/d
≥ 1

e

m∑
k=1

1

M(Xk)2/d
. (5.4)

This bound may be viewed as a counterpart of the entropy power inequality in Information
Theory. It is derived by applying the Hausdorff-Young inequality with best constants (due
to Beckner and Lieb). The constant 1/e is optimal and is attained asymptotically as d→∞
for random vectors unifomly distributed on Euclidean balls. However, in dimension d = 1, it
can be improved to 1/2, which follows from results due to Rogozin [20] and Ball [2].

One useful consequence of (5.4) is the following bound on the L2m-norms of characteristic
functions.
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Proposition 5.3. If f(t) is the characteristic function of a random vector X in Rd, then
for any integer m ≥ 1,

1

(2π)d

∫
Rd

|f(t)|2m dt ≤
( e

2m

)d/2
M(X). (5.5)

Proof. We apply Proposition 5.2 to 2m summands X1,−X ′1, . . . , Xm,−X ′m, assuming

that Xk, X
′
k are independent copies of X. Introduce the symmetrized random vector S̃m =

Sm − S′m, where S′m is an independent copy of Sm. By (4.4), we then get

M(S̃m) ≤
( e

2m

)d/2
M(X).

In addition, S̃m has characteristic function |f(t)|2m. If M(X) is finite, one may apply Propo-

sition 5.1 and conclude that S̃m has a bounded continuous density qm(x) which is vanishing
at infinity. Moreover, qm(x) is maximized at x = 0, and its value at this point is described
by the inversion formula (5.2) which gives

M(S̃m) = qm(0) =
1

(2π)d

∫
Rd

|f(t)|2m dt.

�

Using (5.3), one can obtain a similar relation, but without the factor ( e
2m)d/2 in (5.5).

When M(X) is finite and m is large, the bound (5.5) may be considerably sharpened
asymptotically with respect to m when restricting the integration to the regions |t| ≥ ε > 0.

Proposition 5.4. Let f be the characteristic function of a random variable X with
covariance matrix σ2Id (σ > 0) and finite M = M(X). For any ε > 0 and n ≥ 2,∫

|t|≥ε
|f(t)|n dt ≤

(8π2e

n

)d/2
M exp

{
− cdn

M2σ2d
min(σ2ε2, 1)

}
(5.6)

with some absolute constant c > 0.

Proof. Since the random vector X has a density, we have δf (ε) = max|t|≥ε |f(t)| < 1, by
the Riemann-Lebesgue lemma. Moreover, by Proposition 4.1,

δf (ε) ≤ 1− cd

M2σ2d
min(σ2ε2, 1) (5.7)

with some absolute constant c > 0. If n = 2, we apply (5.5) with m = 1 and use the property
that M2σ2d is bounded away from zero, cf. (2.4). In the case n ≥ 3, write n = 2m+ k with
k = 1 or k = 2 for n ≤ 5 and with m = [n3 ], k = n− 2m for n ≥ 6. Then, by (5.5) and (5.7),∫

|t|≥ε
|f(t)|n dt ≤ δf (ε)k

∫
Rd

|f(t)|2m dt

≤
(2π2e

m

)d/2
M exp

{
− cdk

M2σ2d
min(σ2ε2, 1)

}
.

It remains to note that m ≥ 1
4 n and k ≥ c1n for some absolute constant c1 > 0. �
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6. Normal Approximation for Products of Characteristic Functions

Let us now recall standard results about the approximation of products of charactersitic
functions. Consider the sum

Sn = ξ1 + · · ·+ ξn

of independent random variables ξk with mean zero and standard deviations bk such that
b21 + · · ·+ b2n = 1, so that Sn has mean zero and variance one.

In terms of the characteristic functions vk(t) = E eitξk , the characteristic function of Sn
represents the product

fn(t) = E eitSn = v1(t) . . . vn(t), t ∈ R.
Under higher order moment assumptions, it may be approximated by the standard normal

characteristic function g(t) = e−t
2/2 or its Edgeworth corrections on relatively large t-intervals

by means of the Lyapunov coefficients

Lp =

n∑
k=1

E |ξk|p, p > 2,

provided that they are small. We only mention such results for the particular indexes p = 3
and p = 4.

Proposition 6.1. With some absolute constants C > 0 and c > 0,

|fn(t)− e−t2/2| ≤ CL3 |t|3 e−ct
2
, |t| ≤ 1

L3
. (6.1)

Moreover, if Eξ3k = 0 for all k ≤ n, then

|fn(t)− e−t2/2| ≤ CL4 t
4 e−ct

2
, |t| ≤ 1√

L4
. (6.2)

The inequalities (6.1)-(6.2) are often stated in a slightly different form. For example,
in Petrov ([19], p. 109), the relation (6.1) is derived on a smaller interval |t| ≤ 1

4L3
with

C = 16 and c = 1/3. As can be seen from the proof or properly modifying it, the interval
of approximation can be increased to |t| ≤ c0

L3
with some absolute constant c0 > 1 at the

expense of a smaller value of c and a larger value of C. Similar relations with arbitrary real
p > 2 can be found in the review [6].

In the non-interesting case, where L3 or L4 are greater than 1, (6.1)-(6.2) hold true on
the larger interval |t| ≤ 1. This can be seen from the Taylor integral fromula for the function

h(t) = fn(t)−e−t2/2 about the point t = 0, using the property that the first 2 and 3 derivatives
of h(t) at the origin are respectively vanishing.

In general, the function p→ L
1

p−2
p is non-decreasing with Lp ≥ n−

p−2
2 . In particular,

1√
n
≤ L3 ≤

√
L4. (6.3)

Since E |ξk|p ≥ (E ξ2k)p/2, we also have

Lp ≥ bp1 + · · ·+ bpn ≥ (max
k

bk)
p. (6.4)
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Now, if instead of Sn, one considers the normlized sum

Zn =
X1 + · · ·+Xn√

n
,

these results can be correspondingly reformulated. Then one should assume that the indepen-
dent random variables Xk have mean zero and standard deviations σk such that σ21+· · ·+σ2n =
n. In this setting, it is more natural to represent the Lyapunov coefficients as

Lp = n−
p−2
2 βp, βp =

1

n

n∑
k=1

E |Xk|p.

Thus, βp = E |X|p when Xk are independent copies of a random variable X.
In general, from (6.3)-(6.4) it follows that

1 ≤ β3 ≤
√
β4, 1 ≤ max

k
σk ≤ (nβp)

1/p. (6.5)

Finally, let us state Proposition 6.1 once more about the normalized sums.

Proposition 6.2. With some absolute constants C > 0 and c > 0, the characteristic
function fn(t) of Zn satisfies

|fn(t)− e−t2/2| ≤ Cβ3√
n
|t|3 e−ct2 , |t| ≤

√
n

β3
. (6.6)

Moreover, if EX3
k = 0 for all k ≤ n, then

|fn(t)− e−t2/2| ≤ Cβ4
n

t4 e−ct
2
, |t| ≤

√
n√
β4
. (6.7)

7. Refinement of Theorem 1.1

Let us return to the setting of Theorem 1.1 and assume that the independent random vectors
Xk have mean zero, covariance matrix σ2kId, and finite maxima of densities Mk = M(Xk).
Recall the notations

β3 = sup
|θ|=1

[
1

n

n∑
k=1

E | 〈θ,Xk〉 |3
]
, β4 = sup

|θ|=1

[
1

n

n∑
k=1

E 〈θ,Xk〉4
]
,

and

∆n = sup
x
|pn(x)− ϕ(x)|.

Here we prove this theorem in a somewhat more general form (although more complicated).

Theorem 7.1. With some positive absolute constants C, c, the density pn of Zn satisfies

∆n ≤
Cdβ3√
n

+ Cd (M1 . . .Mn)
1
n exp

{
− cd

n∑
k=1

1

M2
kσ

2d
k

min(σ2k/β
2
3 , 1)

}
. (7.1)



Berry-Esseen bounds 13

Moreover, if E 〈θ,Xk〉3 = 0 for all θ ∈ Rd and k ≤ n (in particular, if the distributions of Xk

are symmetric), then

∆n ≤
Cdβ4
n

+ Cd (M1 . . .Mn)
1
n exp

{
− cd

n∑
k=1

1

M2
kσ

2d
k

min(σ2k/β4, 1)
}
. (7.2)

Proof. Since necessarily M ≥ cd and
√
β4 ≥ β3 ≥ 1 (cf. (2.4)), the inequalities (7.1)-(7.2)

are fulfilled automatically for n = 1. So, assume that n ≥ 2.
In terms of the characteristic functions vk(t) = E ei〈t,Xk〉, the characteristic function of Zn

is given by the product

fn(t) = E ei〈t,Zn〉 = v1

( t√
n

)
. . . vn

( t√
n

)
.

Applying Hölder’s inequality and then Proposition 5.3, we get∫
Rd

|fn(t)| dt ≤
n∏
k=1

(∫
Rd

∣∣∣vk( t√
n

)∣∣∣n dt)1/n

<∞.

Hence, one may apply the Fourier inversion formula to represent the densities of Zn as

pn(x) =
1

2π

∫
Rd

e−i〈t,x〉fn(t) dt, x ∈ Rd.

Using a similar representation for the standard normal density, we get

∆n ≤
1

2π

∫
Rd

|fn(t)− e−|t|2/2| dt. (7.3)

Next, we split integration in (7.3) into the two regions. From Proposition 5.4 applied to
the characteristic function vk(t) of Xk, we obtain that, for any ε > 0,∫

|t|≥ε
|vk(t)|n dt ≤

( C0√
n

)d
Mk exp

{
− cd n

M2
kσ

2d
k

min(σ2kε
2, 1)

}
,

where C0 = 2π
√

2e. Equivalently,∫
|t|≥ε

√
n

∣∣∣vk( t√
n

)∣∣∣n dt ≤ Cd0 Mk exp
{
− cd n

M2
kσ

2d
k

min(σ2kε
2, 1)

}
.

Applying once more Hölder’s inequality∫
|t|≥ε

√
n
|fn(t)| dt ≤

n∏
k=1

(∫
|t|≥ε

√
n

∣∣∣vk( t√
n

)∣∣∣n dt)1/n

,

we then get ∫
|t|≥ε

√
n
|fn(t)| dt ≤ Cd0 (M1 . . .Mn)

1
n exp

{
− cd

n∑
k=1

min(σ2kε
2, 1)

M2
kσ

2d
k

}
.

Since ∫
|t|≥ε

√
n
e−|t|

2/2 dt ≤ Cde−nε
2/4
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for some absolute constant C > 0, it follows that∫
|t|≥ε

√
n

∣∣fn(t)− e−|t|2/2
∣∣ dt ≤ Cde−nε

2/4

+ Cd (M1 . . .Mn)
1
n exp

{
− cd

n∑
k=1

min(σ2kε
2, 1)

M2
kσ

2d
k

}
. (7.4)

We now turn to the other region |t| < ε
√
n. By the mean zero and isotropy assumption

on the distribution of Xk, we have E 〈θ,Xk〉 = 0 and E 〈θ,Xk〉2 = 1 for any unit vector θ in
Rd. Therefore, we are in position to apply Proposition 6.2 to the random variables 〈θ,Xk〉.
Write t = sθ for s > 0 and |θ| = 1. Since s→ fn(sθ) represents the characteristic function of
the normalized sum of 〈θ,Xk〉, it satisfies, by (6.6),

|fn(sθ)− e−s2/2| ≤ Cβ3(θ)√
n

s3 e−cs
2
, s ≤

√
n

β3(θ)
, (7.5)

where

β3(θ) =
1

n

n∑
k=1

E | 〈θ,Xk〉 |3.

In (7.5), β3(θ) can be replaced with the larger value β3, which leads to

|fn(t)− e−|t|2/2| ≤ Cβ3√
n
|t|3 e−c|t|2 , |t| ≤ Tn =

√
n

β3
.

This readily yields ∫
|t|≤Tn

|fn(t)− e−|t|2/2| dt ≤ Cdβ3√
n
.

with some absolute constant C. One can now combine this inequality with (7.4) by choosing
ε = 1

β3
. Since β3 ≥ 1, the resulting inequality in (7.3) yields (7.1).

In the second scenario, we similarly apply the inequality (6.7) and combine it once more
with (7.4) by choosing ε = 1√

β4
. �

8. Proof of Theorem 1.1 and Corollary 1.2

The right-hand sides in (7.1)-(7.2) may be bounded and simplified in terms of the functionals

M = max
k

M(Xk), σ2 = max
k

σ2k.

Proof of Theorem 1.1. The k-term in the sum in (7.1) represents a decreasing function
with respect to σ2k and M2

k . Hence the second summand on the right-hand side in (7.1) does
not exceed

CdM exp
{
− cdn

M2σ2d
min(σ2/β23 , 1)

}
.

Moreover, since σ2 ≥ 1 and β3 ≥ 1, necessarily min(σ2/β23 , 1) ≥ β−23 . This further simplifies
the latter expression to

CdM exp
{
− cdn

M2σ2dβ23

}
.
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Using e−x < x−1/2 (x > 0), from (7.1) we obtain that

∆n ≤
Cdβ3√
n

+ Cd
M2σdβ3√

n
.

Here, the first term on the right-hand side is dominated by the second one up to the multiple,
so that the above estimate is simplified to (1.1).

With similar arguments, the second summand on the right-hand side in (7.2) does not
exceed

CdM exp
{
− cdn

M2σ2dβ4

}
.

Using e−x < x−1 (x > 0), from (7.2) we therefore obtain that

∆n ≤
Cdβ4
n

+ Cd
M3σ2dβ4

n
.

Again, the first term on the right-hand side is dominated by the second one up to the multiple,
so that the above estimate is simplified to (1.2). This proves Theorem 1.1. �

Proof of Corollary 1.2. First we need to mention that, if a random vector X has a
log-concave density, so does any linear functional ξ = 〈θ,X〉. This is a consequence of a
well-known characterization of log-concave measures due to Borell [14]. He also derived a
large deviation bound for norms under log-concave measures, which implies in dimension one
that Lp-norms of ξ are equivalent to each other. More precisely,

(E |ξ|p)1/p ≤ Cp (Eξ2)1/2

for all p > 2 with some absolute constant C. Applying this with X = Xk in the case σk = 1,
we conclude that β3 and β4 are bounded by absolute constants. Hence, the inequalities
(1.1)-(1.2) are respectively simplified to

∆n ≤
CdM2

√
n

, ∆n ≤
CdM3

n
.

To prove (1.3)-(1.4), it remains to recall the bound (2.5) which gives M ≤ Kd
d , where Kd is

the maximal isotropic constant for the class of log-concave probability distributions on Rd.
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